## **CAMBRIDGE INTERNATIONAL EXAMINATIONS**

Cambridge International Advanced Subsidiary and Advanced Level

## MARK SCHEME for the May/June 2015 series

## 9702 PHYSICS

9702/35

Paper 3 (Advanced Practical Skills 1), maximum raw mark 40

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2015 series for most Cambridge IGCSE<sup>®</sup>, Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.



Syllabus

**Paper** 

| go - |            | Cambridge International AS/A Level – May/June 2015                                                                                                                                                                                                                                                                          | 9702         | 35           |
|------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------|
|      |            | Cambridge international Ao/A Ecret - may/oune 2010                                                                                                                                                                                                                                                                          | 0102         | 30           |
| (a)  | (ii)       | Value of $x$ to the nearest mm with unit, and in range 25.0 cm < $x$ < 3                                                                                                                                                                                                                                                    | 35.0 cm.     | [1]          |
| (b)  | (ii)       | Values of $V_1$ and $V_2$ in range $0.100\mathrm{V} - 2.500\mathrm{V}$ with unit. Ignore neg                                                                                                                                                                                                                                | gative sign( | s). [1]      |
| (c)  | Min        | sets of readings of $x$ , $V_1$ and $V_2$ scores 5 marks, five sets scores 4 m or help from supervisor $-1$ , major help $-2$ . onsistent trend $-1$ (correct trend is $V_2$ increases and $V_1$ decreases as                                                                                                               |              | [5]<br>s).   |
|      |            | nge:<br>nge of values of <i>x</i> > 60.0 cm.                                                                                                                                                                                                                                                                                |              | [1]          |
|      | Eac<br>The | umn headings: ch column heading must contain a quantity and a unit where appropre presentation of quantity and unit must conform to accepted scientification $V_2/V_1$ (no unit).                                                                                                                                           |              | [1]<br>n     |
|      |            | nsistency:<br>values of raw <i>V</i> must be given to 0.001 V.                                                                                                                                                                                                                                                              |              | [1]          |
|      | The        | nificant figures: e number of significant figures for $V_2/V_1$ must be the same as (or one st number of significant figures in the corresponding values of $V_2$ and                                                                                                                                                       |              | [1]<br>) the |
|      |            | culated values: $V_1$ calculated correctly to the number of s.f. given by the candidate.                                                                                                                                                                                                                                    |              | [1]          |
| (d)  | (i)        | Axes: Sensible scales must be used. Awkward scales (e.g. 3:10) are not Scales must be chosen so that the plotted points occupy at least ha grid in both <i>x</i> and <i>y</i> directions. Scales must be labelled with the quantity that is being plotted. Scale markings should be no more than three large squares apart. |              | [1]          |
|      |            | Plotting: All observations must be plotted. Diameter of plotted points must be < half a small square (no "blobs' Plotted points must be accurate to within half a small square.                                                                                                                                             | ').          | [1]          |
|      |            | Quality: All points in the table must be plotted on the grid for this mark to be All points must be $\pm$ 0.025 (to scale) on the $V_2/V_1$ axis of a straight                                                                                                                                                              |              | [1]          |
|      | (ii)       | Line of best fit:  Judge by balance of all points on the grid about the candidate's line                                                                                                                                                                                                                                    |              | [1]          |

**Mark Scheme** 

Page 2

1

points). There must be an even distribution of points either side of the line along

the full length. Allow one anomalous point only if clearly indicated by the

candidate.

| Page 3 |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                       | Paper |  |  |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--|--|
|        |                                                                                                                                                                                                                  | Cambridge International AS/A Level – May/June 2015 9702                                                                                                                                                                                                               | 35    |  |  |
|        | (iii) Gradient:  The hypotenuse of the triangle must be greater than half the length of the The method of calculation must be correct.  Both read-offs must be accurate to half a small square in both the x and |                                                                                                                                                                                                                                                                       |       |  |  |
|        |                                                                                                                                                                                                                  | y-intercept:<br>Either:<br>Check correct read-off from a point on the line and substituted into $y = mx + c$ .<br>Read-offs must be accurate to half a small square in both $x$ and $y$ directions.<br>Or:<br>Check read-off of the intercept directly from the graph | [1]   |  |  |
|        |                                                                                                                                                                                                                  | (accurate to half a small square).                                                                                                                                                                                                                                    |       |  |  |
| (e)    |                                                                                                                                                                                                                  | ue of $A = 15 \times \text{candidate's gradient and value of } B = 10/\text{candidate's } y\text{-intercept.}$ not allow fractions or final answer to 1 s.f.                                                                                                          | [1]   |  |  |
|        | Uni                                                                                                                                                                                                              | ts for $A$ ( $\Omega$ m <sup>-1</sup> or $\Omega$ cm <sup>-1</sup> or $\Omega$ mm <sup>-1</sup> ) and $B$ ( $\Omega$ ) dimensionally correct.                                                                                                                         | [1]   |  |  |
| 2 (c)  | (i)                                                                                                                                                                                                              | Value of raw $\theta$ to the nearest degree, with unit, in range $\theta$ < 90°.                                                                                                                                                                                      | [1]   |  |  |
|        | (ii)                                                                                                                                                                                                             | Percentage uncertainty in $\theta$ based on absolute uncertainty of 2 to 5°, and correct method of calculation.                                                                                                                                                       |       |  |  |
|        |                                                                                                                                                                                                                  | If repeated readings have been taken, then the uncertainty can be half the range (but not zero) if the working is clearly shown.                                                                                                                                      | [1]   |  |  |
|        | (iii)                                                                                                                                                                                                            | Correct calculation of $\cos (\theta/2)$ correct to 2 s.f.                                                                                                                                                                                                            | [1]   |  |  |
| (d)    | (ii)                                                                                                                                                                                                             | Value of $T_1$ with unit and in range 0.5s < $T_1$ < 1.5s.                                                                                                                                                                                                            | [1]   |  |  |
|        |                                                                                                                                                                                                                  | Evidence of repeats here or in (e)(ii) or (f)(ii).                                                                                                                                                                                                                    | [1]   |  |  |
| (e)    | (ii)                                                                                                                                                                                                             | Value of $T_2$ with unit in range 0.5s < $T_2$ < 1.5s.                                                                                                                                                                                                                | [1]   |  |  |
| (f)    | (ii)                                                                                                                                                                                                             | Second value of $\theta$ .                                                                                                                                                                                                                                            | [1]   |  |  |
|        |                                                                                                                                                                                                                  | Second values of $T_1$ and $T_2$ .                                                                                                                                                                                                                                    | [1]   |  |  |
|        |                                                                                                                                                                                                                  | Second value of $T_1$ > first value of $T_1$ and                                                                                                                                                                                                                      |       |  |  |
|        |                                                                                                                                                                                                                  | Second value of $T_2$ < first value of $T_2$ .                                                                                                                                                                                                                        | [1]   |  |  |
| (g)    | (i)                                                                                                                                                                                                              | Two values of <i>k</i> calculated correctly.                                                                                                                                                                                                                          | [1]   |  |  |
|        | (ii)                                                                                                                                                                                                             | Correct justification of s.f. in $k$ linked to s.f. in $\theta$ and $T_1$ and $T_2$ (or $\theta$ and raw times) [but not $\cos (\theta/2)$ ].                                                                                                                         | [1]   |  |  |
|        | (iii)                                                                                                                                                                                                            | Sensible comment relating to the calculated values of $k$ , testing against a criterion specified by the candidate.                                                                                                                                                   | [1]   |  |  |

| Page 4 | age 4 Mark Scheme                                  |  | Paper |
|--------|----------------------------------------------------|--|-------|
|        | Cambridge International AS/A Level – May/June 2015 |  | 35    |

| (h) | (i) Limitations (4 max.)                                                                                                                                                               | (ii) Improvements (4 max.)                                                                                                                                                                   | Do not credit                     |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
| A   | Two readings not enough to draw a valid conclusion                                                                                                                                     | Take many readings for different angles <u>and</u> plot a graph/ take more readings and compare <i>k</i> values                                                                              | "repeat readings"/ "few readings" |
| В   | Difficult to measure <u>angle</u> with reason e.g. hand shakes/curve at bottom/position of zero uncertain/parallax/rod gets in the way/thick string/holding protractor without a stand | Trace on a card/use graph paper/project onto screen and measure angle/use trigonometry/take photo and measure angle/clamp protractor  Use thinner string                                     |                                   |
| С   | Difficult to maintain gap (between strings or stands) or angle with reason e.g. stands move/string slips                                                                               | Method to prevent movement of stands e.g. G clamp stands/mark positions of stands on bench Make indentations around/in the rod(s) so the strings do not slide/method of fixing string to rod |                                   |
| D   | Movement of rod not confined to the wanted oscillation/rod rotating                                                                                                                    | Electromagnetic release                                                                                                                                                                      | Fans/air conditioning             |
| E   | Difficult to obtain time with reason e.g. high damping/time too short/no. of oscillations too few/friction between string and rod (loses energy)  Large uncertainty in time            | Video with timer/frame by frame Longer rod/longer string/heavier rod                                                                                                                         |                                   |
| F   | Difficult to identify/judge end or highest point of oscillation                                                                                                                        | Count to middle/fiducial/reference marker at middle                                                                                                                                          |                                   |